Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Archives of Craniofacial Surgery ; : 6-16, 2022.
Article in English | WPRIM | ID: wpr-925546

ABSTRACT

Neurofibromatosis type 1 is the most common tumor predisposition syndrome inherited in an autosomal dominant (100% penetrance) fashion with a wide variety of expressivity. From the perspective of plastic surgery, the most significant clinical symptoms, including disfiguration, peripheral neurologic symptoms, and skeletal abnormalities, are caused by various tumors originating from the affected nerves. Surgical removal is the standard of care for these tumors. However, the outcome is frequently unsatisfactory, facilitating the search for additional therapeutic adjuvants. Current trials of molecularly targeted therapies are promising.Abbreviations: CALMs, café-au-lait macules; CNs, cutaneous neurofibromas; FDG, 18F-fluoro-deoxy-glucose; MAPK, mitogen-activated protein kinase; MPNSTs, malignant peripheral nerve sheath tumors; MRI, magnetic resonance imaging; NF1, neurofibromatosis type 1; NIH, National Institutes of Health; PET, positron emission tomography; PN, plexiform neurofibromas; TME, tumor microenvironment

2.
Archives of Plastic Surgery ; : 69-73, 2018.
Article in English | WPRIM | ID: wpr-739448

ABSTRACT

BACKGROUND: Temporal hollowing is inevitable after decompressive craniectomy. This complication affects self-perception and quality of life, and various techniques and materials have therefore been used to restore patients’ confidence. Autologous fat grafting in postoperative scar tissue has been considered challenging because of the hostile tissue environment. However, in this study, we demonstrate that autologous fat grafting can be a simple and safe treatment of choice, even for postoperative depressed temporal scar tissue. METHODS: Autologous fat grafting was performed in 13 patients from 2011 to 2016. Fat was harvested according to Coleman’s strategy, using a tumescent technique. Patient-reported outcomes were collected preoperatively and at 1-month and 1-year follow-ups. Photographs were taken at each visit. RESULTS: The thighs were the donor site in all cases for the first procedure. The median final volume of harvested fat was 29.4 mL (interquartile range [IQR], 24.0–32.8 mL). The median final volume of fat transferred into the temporal area was 4.9 mL on the right side (IQR, 2.5–7.1 mL) and 4.6 mL on the left side (IQR, 3.7–5.9 mL). There were no major complications. The patient-reported outcomes showed significantly improved self-perceptions at 1 month and at 1 year. CONCLUSIONS: Despite concerns about the survival of grafted fat in scar tissue, we advise autologous fat grafting for patients with temporal hollowing resulting from a previous craniectomy.


Subject(s)
Humans , Adipose Tissue , Cicatrix , Decompressive Craniectomy , Follow-Up Studies , Lipectomy , Quality of Life , Self Concept , Thigh , Tissue Donors , Transplantation , Transplantation, Autologous , Transplants
SELECTION OF CITATIONS
SEARCH DETAIL